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SUMMARY

A numerical calculation has been carried out to evaluate the 3 x 3
cross section matrix involved in the electron impactexcitation of the
ground state of H atom tothe 2s andthe 2p levels. The method of solu-
tionis that of atomic eigenstates expansion. Similar calculationhas been
carried out by Burke, Schey and Smith. In this paper, however, the
definite integral terms in the coupled radial differential equations are
eliminated through some linear transformation of the radial functions,
thus avoiding iteration of these equations. As a result, the equation of
reciprocity and the equation of continuity of currents are numerically
satisfied with anerror to value ratio less than 1 per 1000 on the aver-
age, and the maximum of this ratio, except for a few cases, has been
kept below 1%. A simple perturbation theory has been developed to
evaluate the effect of thelong range and the centrifugal potentials. The
five cross sections, 1s-2s,1s-2p, Is-1s, 2s-2s and 2p-2p, are tabulated.
The agreement of the 1s-2s cross sections with the experimental
results are satisfactory while the calculated ls-2p cross sections are
higher thanthe corresponding experimental values. The 2s-2s and the
2p-2p cross sections have large values, specially at the thresholds. A
Ramsauer effect in the partial cross sections of the 2s-2s elastic
scattering is observed. By comparison with the eigenstate expansion
calculationit is found that the Born approximation, despite its simplic-
ity, gives meaningful results for low and close to threshold energies of
the bombarding electrons. In this paper the effect of the electron spin

and the exchange potentials are also investigated.
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I. INTRODUCTION

The recent experimental results of Lichten and Schultz! on one hand,
and Stebbing et al.?2 on the other, of the 1s —»2s transition cross section
in the hydrogen atom by electron impact and the apparent discrepancy in
these measurements, and the measurement of 1s —»2s transition by Fite
et al.3 also in hydrogen, necessitate accurate calculation for these cross
sections,

Calculation of the excitation cross sections in atomic hydrogen by
electron impact corresponds to the solution of the problem of three in-
teracting bodies, one proton and two electrons. By taking the position
of the proton as the center of mass, the problem will reduce to the task
of finding the nonseparable wave function of the system of the two elec-
trons with an attractive center of force. Such solution has not been
found yet. However, if this wave function is expanded in terms of the
eigenstates of the hydrogen atom, it is shown inthis paper that through
numerical integration the coefficients of the expansion, which are func-
tions of the position vector of the free electron, can be found exactly.
When an infinite number of terms are included in the expansion the solu-
tion to the problem is exact. Furthermore, the expansion has the ad-
vantage that the asymptotic form of its coefficients are automatically the
asymptotic form of the free electron wave function scattered from dif-
ferent atomic states, which are simply related to the excitation cross

sections.



In this paper atomic states 1s, 2s, 2p are included in the expansion,
and by antisymmetrizing the two electron wave functions according to the
exclusion principle, some contribution from the continuum in the expan-
sion is also taken into account. The first calculation of this type was
performed by Marriot? whose expansion consisted of the 1s and the 2s
states in order to calculate the 1s —»2s transition cross section. This
calculation was extended by Smith> to higher total orbital angular mo-
menta of the system. Percival and Seaton® have formulated the eigen
state expansion technique in general, and have tabulated the coefficients
of the integro-differential equations for s, p and d atomic electrons,.
While this paper was in preparation, Burke, Smith and Shey,7'32 using the
tables of reference (6) for three states 1s, 2s, 2p, have integrated the
resulting integro-differential equations. Their technique of solution
is substanti;lly different from that of this paper in more than one re-
spect, and it is believed that the results presented here are more
accurate.

The degeneracy of the 2s and the 2p levels of the hydrogen atom
makes it necessary, as pointed out by Massey,® that any calculation
concerning ls—»2s or ls —»2p transitions contain these two states
simultaneously. Inthis respectthe presentcalculationand that of refer-
ence(7)is superiortothat of reference (4), where 1s and 2s states are
includedto calculate 1s —»2s transition, orthat of Khashaba and Mas sey,9

where 1s and 2p states areincludedto calculate 1s —»2p transition.




We treat the present problem in the following manner. In Sec. IIA
we derive the integro-differential equations of the problem independent
of reference (6), Sec. IIB is the derivation of the transmission matrix
and the cross sections., In Sec. IIC we derive a useful relationship for
numerical integration based on the symmetry of the interacting potentials.
Sec. IID isthe derivation of the partial wave Born approximation trans-
mission matrix. Different parts in Sec. III deal with techniques of
numerical integration and the effects of the long range potentials. The
transformation of the radial wave functions presented here avoid the
need for iteration of the coupled integro-differential equations, as is
the case in reference (7). Finally, Sec. IV gives the results of numeri-
cal integration and their interpretation,

The numerical integrations were carried out for all partial waves,
where in higher partial waves Born approximation were used. The
transition between the eigenstate expansion calculation and Born ap-
proximation takes place when the results of the two calculations agree

closely.



II. FORMULATION
A. Derivation of the Differential Equations

Since spin orbit interaction of the electrons are neglected, the total
orbital angular momentum L, and the total spin angular momentum S,
are separately conserved. We can then divide the interactions into anti-
parallel spin states where S =0, and parallel spin states where S=1.
We then deal with spatial wave functions of the electrons only and for
brevity we call the orbital angular momentum the angular momentum.

Neglecting the motion of the proton of the hydrogen atom and taking
its position as the origin of the coordinate system, the Schroedinger

equation for the system can be written
[H-E] y(r, r,) =0, (2.1)

where r; andr, are the position vectors of the bound and free electrons,

1

and in atomic units

H_E:_ivlh_v -=->3+—-E, (2.2)

where E is the total energy of the system andr,, is the distance between the

12
two electrons. We expand the total wave function y(r,,r,) in terms of the

eigenfunctions of the total angular momentumlL ,

Y(r,ry) = Yi(rpeg). (2.3)




Since these eigenfunctions are orthogonal and distinct, substitution of

Eq. (2.3) in Eq. (2.1) gives,
[H-E] y,(r,, r,) = O. (2. 4)

The explicit form of ¢, (r,, r,) is given by

£.4
Y ey) =(1+ APy,) Z Z Cmim:: ¢(n,4m,r)

nl'fxl’ﬁz m1®2
x r';lu(knlfﬁz, r2) Y{zmz(ﬂz), (2. 5)
P(nybymy, ) = rflp(“ff’l’rl)Yfﬁlm;(Ql)' (2. 6)

Here ¢(n,4, m/,r)) is the hydrogen atom wave function with radial part
r;P(n4,, r,) and angular part Y,ﬁlml(Ql) and quantum numbersni m;

rptu(k, I’Ez, r,) is the radial part and Y’ﬁz“’z(ﬂz) is the angular part of the free
electron wave function with quantum numbers k_ l'fi,mz. The relationship

between the wave number k and n, is given by
1

1
k2 =2(E + —) . 2.
n, ( 2ni> ( 7)
: 4,4, : .
Finally the constants C_ mzu =(/f,l»£2mlm2|Lm) are vector coupling coefficients
1™2

which make the linear combination of the products of the one electron wave
functions in Eq. (2. 5) the eigenfunction of L. In the problem under con-
siderationn; = 1,2; 4, = 0,154, = IL--f{’,1 P , |L +4, | A 7L

and m, = - ’52,. .y &2. To make the total wave function symmetric for




antiparallel spins or antisymmetric for parallel spins, the operator P ,
interchanges r, and r, while 8 is +1 for the first case and is -1 for the
second,

By taking L perpendicular to the z-axis M= 0 and m, =-m,. Eq. (2.5)

can then be written
- Z L
dp(rg,r,) = (1 + BPy,) "“1 @(ntymy,r,)

x 15! u(knlfﬂ2 ) Tp) Y,£2m2(02). (2. 8)

In order that Y (ryhry,) closely approximates the exact wave function,
we minimize the expectation value of the energy operator with respect to

the radial parts of the free electron wave functions,
f‘PL rp,r,) [H=EJ ¥ (r,,£,) d?r; d®r, = 0. (2.9)

It has been shown by Kohnl0 that the differences between the scattering
amplitudes obtained from these equations and the exact scattering ampli-
tudes are quadratic in the difference between i (r;, r,) and the exact wave

function. When the variation is carried out inside the integral we obtain

£. 4.0 *
Z Cmi-:,lo_[ (nydymy,r )Y:Ezmz(nz) [H-Elyy (r), £,) dry d2,=0. (2.10)

"1




By means of Eqs. (2.2), (2.8), the Schroedinger equation for the hydro-

gen atom,

n 2

[vlz ¥ —:".—1] p(nyymyry) = L P(nytymy . rq) s (2.11)
1

and Eq. (2.7), Eq. (2.10) reduces to

L4, 47'4L * *
) ) ) Co-mg0 Cng -0 f@ (nyfymyvy) Yo 0,(Q,) (146P,,)

! ? r [l
ml nl ’f/l '€2 ml

4,4, +1) 1 1 '
v2 _ 212 g2 2 [~ — n, 4. 'm/,r
x[:r2 I O P Py ey )

rh u(knl’ CERP) Y{2'm2r (2,)d%ry dQ, = 0, (2.12)

where Vrz is the radial part of V22. By orthogonality of the hydrogen atom
2

and spherical harmonics wave functions, the relation!l

4,412
Z [Cmi.f,lo] =1, (2. 13)

my

the integration by parts of the exchange terms, and the relationl?

4’,2%11. _ L-/ﬁl-{z C’F’1’E2L

-mlmlo : ml-mlo’ (2° 14)



Eq. (2.12) leads to

_ 2 Z Z Z et At Icp*(n&lml,q)sri‘azm;nz)

- ! 1
I/ﬁl{l 7 S | m10 ml"mlo Ty,
my N2 M

u(kn"ﬂ,;, r,)
x@(nll/ﬂllmll’rl) 1;-2 Y,ﬂ;mé(ﬂz) +,3<p(n;fﬁimi,r2)
u(kn; 4, 1) ,
X " Y'f,;m; (Ql) d’r, dQ,_,
+ B Z (-)L-fﬂl-{2 3(’£;’£;"€2'£1)<:1'3 t knz;') I P(n;4;, 1) rz_lp(“f’ﬂ;’ 1))
' 1p 1 0
“1{1{2
< u (knl, Lrs rl)drl =0. (2.15)

If /1, is expanded in terms of the Legendre polynomials and use is made

of the addition theorem 13 we obtain

@ A

1 Te
IT,;: Z :Tf—l P)\(COS 612)
=0 >
[+] +A }\
477 re . . -
) Z Z 20+ A+ Yy, Q) Y, @) - | (2. 16)
=0 [.L=">\_




Inthis expression 6,, is the angle between the position vectors r, and

r, at the origin, and r. is the smaller and r, is the larger of Irll and

|r2 . We also introduce

T,

2
yy(ntn'd, r,) = r;(>‘+1) “ P(n4, r)) P(n'4’, ) rf‘dr1

“0
o
+ J’P(n/ﬁ r) P(n'd’, r,) rr (MU gr
2 L | LD § 1 1

T2

Then it follows that

r P(ni4, ;) P(n'd’, r,) L.

r
() 12

By means of Eq. (2. 18), the relation!?

000 !

jY* Y, Y, dQ= (2hy11) (24, 411" ¢ttt L hityts
’ﬁsms {2"‘2 ’Clml 4w(2'ﬁs+1)

mymamg

and the definition

(o2]

(n/dlknl/&'): I p(n/c,r)u(knl/d’, r)dr,

v

Eq. (2.15) when multiplied by r, gives

(2.17)

drl - Z Z Y}\P(Ql)Yt\y(Qz)J’}\(n ’En"ﬁl, r2).(2. 18)

(2.19)

(2. 20)
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- + k% 4 .I.__] u(knl’E2 , rz)

2 2
dr T, "y 2

sy 7L 2. ). hlt el

24, +1 mymy' A0 p=-

pmyimy 000 /.Lm2m21 000

' ! AMAA M A A .
§ {C?——,—EIT)% Cwﬁl 4, ¢t ¢ Lyt c 22 )’)\(nl’ﬁxnx Ty u(k Ay 1y
2

24, + 1\F AR A AL ABA ADAL
- 271 2 271 21 [ [} { k , [
+ﬁ<2£1'+1> Crngmy €000 Cunmys oo = P H'mdn(mtik, o4y o))

A, -4 ' 1
s Z () =t g4, /wa)(;7 +k§1,>p(nl tye) (ngdylk o4y =0 (221

2:72 "1 2
1

In the exchange integrals above we have defined P(k, 4,,r) as u(k, 4,,r).
1 1

The vectorial equations
L=2£ +1¢,, (2.22)

where L. is constant but ll and 12 take the values given before, can be
divided into two groups, one with L wﬂl —4’,2 even and the other with

L -4, -4, odd. Since the total spacial wave function has the parity of

{1 + »\52 » in the first group the wave function has the parity of L and in the
second a parity opposite toL. By conservation of parity we have two

distinct groups of interactions. In this problem, where 1s, 2s and 2p

10




states of atomic hydrogen are taken into account, it is easy to see that
when L- fﬁl-/€2 is even, the set of quantum numbers knlfﬁ2 has 4
values; one for each of the 1s and 25 states and two for the 2p state,
When L-4, -4, is odd, knl/{’/2 has one value which corresponds to the
elastic scattering of electrons by the 2p state of the hydrogen atom.
Eq. (Z.Zi)is evaluated for these cases andthe resulting differential equa-
tions are listed in Appendix I. In evaluating Eq. (2.21) it should be noted

£, 4,4

that the Cmim;m:; coefficients are subject to the condition that £,£,{,
form a closed triangle and my = m; +m, .15 This limits the summation
over A and u considerably to few terms only. Summation over
m,,m;, A and x4 are carried out using the numerical values of the C coef-
ficients given by Condon and Shortley.16

Percival and Seaton® have derived the same differential equations
for the scattering of free electrons by atomic s, p and d electrons in
hydrogen atom using the theory of irreducible tensor operators to
evaluate the interaction terms between the two electrons in the dif-
ferential equations., The calculation becomes considerably simpler in
this way. The results of the two methods are identical.

In the rest of the paper except Sec. IIE we discuss the solutions
to the four coupled differential equations given in Appendix I and which
arise when L —/ﬂl —/{’,2 is even. The single differential equations for

L - /ﬂl - {2 odd is derived in Sec, IIE. Its numerical integration can be

treated as a special case of the four coupled differential equations.

11



When the integrals representing the direct potentials in the four
differential equations are evaluated and some change is made in the
limits of the exchange potential integrals, these equations can be
written in the following matrix form

42 , I (1 +1)

p Sk el (k1) = 2V e (k). (2.23)
r r

The four components of v are the four radial functions of the free electron.

V is a 4x4 symmetric matrix that is the sum of three matrices,

V.. =D.. + E. .,

1) 1) 1)
o
_ v v
Eij = Fij+ ? g j—m hij dr, (2. 24)
v=1 Y

where D;. is the direct and E;; is the exchange potentials and both are
functions of r. The matrix Eij contains in addition integrals with respect
to r and for the purpose of numerical integration it can be written as the
sum of two matrices. The explicit forms of D,;, Fij, g';j and h’.:j are given
in Appendix II, The value of ois 2 for i=j=3 and i=j=4, and is 1 for all
other values of i and j. It is understood that for the exchange terms

the components of v on the right hand side of Eq. (2. 23) are inside the

integrals of the exchange terms,

12




B. Derivation of the Transmission Matrix From Solutions

of the Differential Equations

The method is similar to that used by Bransden and McKee,17
and by Marriot? Eq. (2. 23) constitutes a set of 4 coupled, second
order, differential equations. Three components of u can be elimi-
nated from these equations, resulting in an 8th order differential
equation for the remaining component. Therefore there are 8 sets of
solutions toEq. (2.23). However, only half of these solutions are
regular at the origin. Each of the four regular solutions corresponds
to a definite vector u. The four vectors can properly be represented

by a 4x4 matrix u_,,mj=1, 2, 3, 4, wheren corresponds to the partic-

j
ular component and j corresponds to the particular solution of u. The

four solutions are carried out numerically in the next section.

From the explicit form of V it can be seen that V vanishes at infinity.

The asymptotic solutions of u as given by Eq. (2.23) is therefore

]
[

unj(r)"van’.sin(knr-—T+Snj), (2. 25)

n,j=12 3 4

13



where a ; is the amplitude and 8,; is the phase shift of the jth solution of
the ntt component of u.

Corresponding to the 4 components of u there are 4 channels open to
the reaction. If the incident wave be in the mt? channel (m =1, 2, 3, 4), the

travelling wave in the nt channel will be given by

u, (r) ~exp [—i(knr --%-lnw)] $(m,n) - 5, exp [i(knr -% lnvr):l,
n=1, 2, 3, 4. (2. 26)

The constantsS_are the amplitudes of the scattered waves. Since Egs.
(2.26) are also the asymptotic solutions of Eqgs. (2.23), they must be
equal to linear combinations of Eqs. (2.25). If we call the coefficients

of the linear combinations Pj we must have
4

. I m
2 Pjani sin (knr --—“2-,-+ 8nj> =

j=1

(kn)-u {exp [_i (knr --;- lnn):‘ d(m,n) - S__ exp [1 (knr ‘_12_1“77)]}’ (2.27)

n,m=1, 2 3, 4.

14




On the right-hand side, we have used the normalization of Blatt and

Weisskopf.18 If we equate the coefficients of exp [— i(knr -12 lnw):' and

exp [i (knr - % ln7r>:] in Eqs. (2. 27) we obtain

)

4

ZPj a , exp —[i Snj]

j=1

[So]
puts

5 (m,n)

Iy

4

)

j=1

Pja

nj CXP [i Sni] =:ﬁ_.2i S.n

(2.28)

Separation of Eqs. (2.28) into real and imaginary parts gives

4

Z [(RPj)sin Sn’. -(& P’) cos Snl] a.; =V—i_—n 5(m,n)

j=1

4

Z [(RP])cos 8a; +(& Pj)sin Sni] a,, =0

j=1

4

=2

Z [(RP.)sin 8,, +(A P,) cos Sn,] a,; = RS,
. 2

Z [(RB)cos 5, ~@P)sin 5] a,, = == 4,
j=1 V-k_;

3

(2.29)

In the above R or & represent the real or the imaginary part of the quantity

that follows them. Eqs. (2.29) are a set of 16 linear equations for 16

and & S,

unknowns RPj, d P, RS,

magnitude of S~ will be given by

15

Once these unknowns are found,19 the



|S,. 12 = (RS

)
mn

¥+ s, 0t (2. 30)

The cross section is obtained by asymptotic expansion in spherical

harmonics of the incident plane wave?20

@

exp [ikz] '\»-L—T-é Z 21+ 1y it # {exp ’:—- i <kr —%lwﬂ
{=0
- exp [i (kr—-;-lw)}} Y, - (2.31)

The magnitude of the ingoing wave on the right hand side of Eqs. (2.27)forn=m
is [k /7(21_ + 1)]'/? times the magnitude of the partial wave of the ex-
pansionofr expli kmz].. The plane wave has a flux of v which, in atomic
units, is equal tok. The ingoing flux of the right-hand side of Eqgs. (2.27)

is therefore k:, /[n(zlm + 1)]. The outgoing flux in the channel n #m is

S-mn|2. The cross section is obtained when we average the ratio of the
outgoing flux to the ingoing flux over the initial states, and sum over the
final states. For a particular spin state of the two electrons, unpolar-
ized electron beam and unoriented atoms, the multiplicity of the initial
states is (2/, +13(2/, +1), where /; and!/, are the angular momentum
of the bound and free electrons, For a polarized beam, m, = 0, where
m, is the magnetic quantum number of the free electron. Then m, =M,

where m, and M are the bound electron and the total magnetic quantum

1

numbers. Since M is constant there is only one initial state for a

16




polarized beam. The multiplicity of the final states is 2L +1, where L is

the total orbital angular momentum. Since 4 =4,, the cross section for

m#£nis
m(2L + 1)
k(21 +1)

Q.. =

Ismnl2 ’ m?n’ (Z. 32)

The outgoing partial wave in the incident channel m consists of the
scattered wave plus the outgoing wave given in the expansion of the plane
wave, Then, according to Eqgs. (2.27) for n = m the magnitude of the
amplitude of the scattered wave is [1-—Sm|. The elastic scattering

cross section is therefore given by

7 (2L + 1)

st ) 1-s |? (2. 33)
k2 (21,+1)

Qmm =

If we define a matrix T by the relation
T=1-8, (2. 34)

Eqgs. (2.32) and (2. 33) can then be combined into a single equation,

0 . mQL+1) |1 |2

(2.35)
k2 (21, +1)

T, is the transmitted amplitude in the nt channel due to an incident wave
in the m® channel. The elements of T,, constitute the transmission

matrix.

17



The matrix S has two properties that are useful as tests on the
accuracy of numerical integration. From Eq. (2.26) it can be seen that
S transforms the ingoing wave into the outgoing waves. The continuity

of the electronic current requires that S be a unitary matrix

4
Z |s,.1?=1,m=1, 2, 3, 4. (2. 36)

n=1

Furthermore, since the Hamiltonian is Hermetian, S must be sym-

| metric,18

S =8 . (2.37)
Eqs. (2.36) and (2.37) are used as tests on the accuracy of numerical
integration,
C. A Useful Relationship

A relationship based on the symmetry of the interaction potentials
can be derived which serves as another test on the accuracy of the
solutions. The Ith and the kP solutions of the i*" component of u by

Eq. (2.23) are given by

18




)

2 l 1
[d +kf"li(i: )]uil= 2 Vi;u
dr? r

i
4 (2. 38)

| |
r

2 bnd
dr ;

Multiplying the first by u,, and the second by u,;; , subtracting the two

expressions and summing over i gives

2 2
Z Ui i“ull -Uy i“i{l = Z Vi [ulkujl =uy ujk] (2.39)
dr? dr?

i . 1.3

Since V;; =V;; » the interchange of the summation indices changes the
sign on the right hand side of the equation, the right hand side must there-

fore be zero. Integrating the left hand side from zero to infinity we obtain

00

2 d? _
ZI [uu 4y, = uu Er_2111,‘]dr_o. (2. 40)

i (1) dl'2

Integrating the above equation by parts, and applying Eq. (2.25) we obtain

4
Z k, a,, ay sin (5“( -8,;)=0

1=1
(2. 41)
k,1=12 3,4 k#1.

19




Although the terms containing the exchange potentials do not cancel out
on the right hand side of Eq. (2.39) the cancellation does take place after

the integration is carried out in Eq. (2. 40).

D. Transmission Matrix According

to Born Approximation

The Born approximation consists of neglecting the exchange potential
terms appearing in the V¥ matrix of Eq. (2.23), and also of neglecting
all the direct potential terms in this matrix except those terms that
connect the incident channel to all other channels.?! Eq. (2.23), when

the incident wave is inthe mt!" channel, reduces to

dr? r
(2.42)
n = 11 21 37 41
u_and u are given asymptotically by
ummk;“ sin (k,t - 1 7/2) (2. 43)
unmk,—,% B, cos(k r -1 _m/2). (2. 44)

We have chosen the constants of proportionality of u_ and u_ such that

B__ is the Born approximation of the reactance matrixR.22:23 Eq. (2. 43)

shows that u_must have the following form24

20




u, = k4 rj; (k,r). (2.45)

where i; (k r) are spherical Bessel functions, Furthermore, if y repre-
m m
sents the homogenous solution of Eq .(2.42), it must have the following
forms
yn:an kn rjln (knr), (2.46)

y, ~a, sin(k_ r -1 7/2), (2.47)

with a_ some unknown constant. Multiplying Eq. (2.42) on the left by
y, and integrating the result from zero to infinity we obtain by partial

integration

n pm’

The last equality has been obtained by noticing that y and u_ vanish at the
origin, and by using their asymptotic forms as given by Eqs. (2. 44) and

(2.47). We therefore have

_ % . . 2
B =-2(k k) J i (&) Doy dpy, (k) rodr (2.48)

0

This is identical to the expression given for B by Seaton. 25

21



The transmission and the reactance matrices are related by T = - 2i R/(1-1iR).
Since B << 1, the transmission matrix according to the Born approximation is

given by

T, = 4 <k,.k,,,>”2f i4n (ko) D, iy, (k,r) r?dr. (2.49)
[1]

Substitution of Eq. (2.49) is Eq. (2.35) would give the cross section according
to the Born approximation., It should b: noted that the symmetry of T insures
Eq. (2.37) to be satisfied while Eq. (2.36) is not satisfied anymore. If we
define T =-2iB/(1-iB), then § =(1 +iB)/(1 -iB) and the symmetry of B
makes $ unitary. Eq. (2.36), the continuity of current, is then satisfied.

This is the definition of approximation II of the Born approximation according

to Seaton?? which will be discussed later.

E. Elastic Scattering of Electrons

by the 2p States of the Hydrogen Atom
The angular momentum of the free electron, /,, in the 2p channel has
the values L-1, L,L+1, where L is the total angular momentum of the
system. The first and the last values were considered in previous sections,
The case I, = L corresponds to a wave function inthe 2p channel with a
parity different from all channel wave functions considered previously.
It therefore corresponds to elastic scattering. The wave function in this

case is given by
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Pulror) = A *BP”)Z CI, O () 2y @, (2.50)

ra
1..-.l

When Eq. (2.9) is formed with this wave function, and minimized with
respect to u(k,L,r, ), treatment which led to the derivation of the four
differential equations will give the following differential equation

2
[d +1g - LA D +.?_] u, ()
dr? r r

_[3(.‘1;+k§> 5(L,1) rR,, (r) (2p|k,L)

+2 l:yO (2p2p, l') "%YQ (2p2p’ l‘)] UL(I‘)

[ 3yL‘1 (2pk2L’ r) 3yL+1 (2pk2L, r>_|

- =0 (2.51
+261 Ry (1) [ LD (D Taen aes | O 5N
The asymptotic solution of this equation is given by

u, ~a sin(k,r -L7/2 +3,). (2.52)

If the scattering amplitude is designated by T, it can be shown from

Sec. IIB that for a particular L

Tss:1-exp2i8=—2iexp(i8)sin 3, (2. 53)

where for simplicity we have suppressed the subscriptL. The cross

section, according to Eq. (2. 35), is given by
47 (2L + 1)
3k2

23

Q,; = sin?$ (2. 54)



The total elastic scattering cross section by the 2p states is the sum of
this cross section and the cross section corresponding to /, =L - 1 and
I, =L+ 1 which were considered previously.

The Born amplitude, Eq. (2. 48) in this case is given by

03]

55 = - 2k2J‘ iy (k,r) Doy (k,r)r?dr, (2. 55)

0

ey
n

where by Eq. (2, 51),

1
+ ¥, (2p2p, 1) -z V2 (2p2p,r) . (2. 56)

A

|-

Dgg = -

III, NUMERICAL INTEGRATION

A. Decomposition of the Differential Equations

If it were not for the definite integrals appearing in the potential
matrixV, the set of the four coupled differential equations (2. 23) could be
integrated by any standard technique. The presence of these unknown
constants whose integrand involve the unknown functions makes it
necessary to solve these equations by iteration or by transformation
of v into other vectors, whose differential equations do not contain
definite integrals. Since the terms containing definite integrals are

small as compared to the direct potentials, the iteration method can be
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used by assuming that the values of these integrals are zero. The

differential equations are then integrated, the values of the definite

integrals that are subsequently obtained are substituted in the differential

equations, and the integration is repeated. The process is repeated

until sufficiently consistent values of these integrals are obtained. This

method is useful if the convergences of the constants are fast enough,

and the cross section is not very sensitive to the values of these constants.
In the second method, the transformation of v fixes the values of the

constants and thus avoids iteration, whereby the computation is reduced

considerably. The description of the method will be given here.26:27

By making use of Eq. (2.24), Eq. (2.23) can be written

g, 0D
—+k?} o ——"u, =
|:dr2 ' r? '

4 o
2Z (D;; +F, Du; + E g, CH (3.1)
j:l ‘U.zl
where
[¢o}
Ci; = J. hf, (r) u; (r) dr. (3.2)

0

We introduce the functions v, and u’i‘l that are solutions of the following

differential equations
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4

.d2 2 li(li+1)—
[F thi-—=—w =2Z [Dis'*Fij] vi (3.3)

j=1

- 4

d? 2 L (1 + 1) ! E : . ] Kkl

[ﬁ +ki-—?'— u; =2 [Dij+Fij u
ji=1

. (3.4)
+28 (i, k) gy}

Then u, is given by the following expression

ui=vi+ZZZ Cklu . (3. 5)

Eq. (3.5) can be verified by multiplying Eq. (3.4) by C;, summing over

k, ! and v, and adding to Eq. (3.3), where upon Eq. (3. 1) results,

Substitution of Eq. (3. 5) in Eq. (3.2) gives

Z Z Z S(iju, kiv) - A‘“‘l] , =B, (3. 6)

l=1 wvml

i, =12,3,4; u=1,2fori=j=3andi=j=4; u=1otherwise,

where A‘”‘I and BY; are defined by
~
Leo]
kl _ xl
A% _j h¥; uj dr
0
(3.7)

B“.‘j :r h* v. dr
i ij i

0
J/
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The numerical integration is carried out by integrating Eqgs. (3. 3)
and (3. 4) by any standard method, calculating A‘i"‘j‘l and B‘i‘j by Egs. (3.7)
and, finally, solving the system of 18 algebraic equations given by Egs.
(3.6) to find C}, . With the known values of these constants the integra-
tion of Eqgs. (3.1) is straightforward.

The determinant of Egs. {3. 6) becomes singular for L=0 and 1. This
is shown in Appendix III. To remove the singularity, some of the Cy, are
chosen arbitrarily, and the rest of the C/; are found in terms of the chosen

ones,

B. Solution at the Origin
In order that the four soltuions of v be independent of each other we

must have

4
Z C’.uij}‘O,i:l, 2, 3, 4, (3. 8)
ji=1

where C, are some constants. A necessary condition for this to be

satisified is that the determinant of Eq. (3. 8) be nonzero,

[lu, 11 #o0. (3.9)

It is not difficult to see that this also is a sufficient condition. At the

origin the solution u,, can be expressed as power series in r,

s, 4+
u,, = Z aj, r'
! ! (3.10)

ij



where a‘;’. are the coefficients of expansion, and s; are given integers
for each component of v and are fixed by the behavior of Eq. (2. 23)

at the origin, We can satisfy Eq. (3. 9) at the origin by having
Ila;; [l # 0. (3.11)

By choosing suitable values of aoij, subject to the restriction (3. 11),

four independent solutions are obtained.

C. Solution at Large r

With given initial values the solution of Eq. (2. 23) can be extended
from origin to any desired value of r. In order to obtain the
asymptotic amplitudes and the phase shifts, the presence of the
centrifugal and long range potentials make it necessary to extend
the solutions to infinity. This is undesirable because of the time
consumption on the computer, and the accumulated error due to
the long range integration. Seaton?3 has solved the problem of
r'? long range potentials occuring in the off diagonal terms of the
potential matrix V by diagonalizing the asymptotic form of the dif-
ferential equations (2. 23) and the corresponding S matrix. By an
inverse transformation the elements of the original S -matrix are
found,

Instead, we develop here a perturbation theory which is based

on the method described by Mott and Massey.2® The error in the
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resulting solution is inversely proportional to the squared of the

distance from the origin.

Eq. (2.23)for largedistances of r can be written

2
[d—d‘i +k___’] w(k, L, r)=2Uu(k, 1, 1), (3. 12)
Tr

where U is the sum of the centrifugal potential matrix and the asymptotic
form of the V¥ matrix., The elements of U are given in Appendix IV,

A component of Eq. (3.12) is of the following form:

[d’+kﬂ u(r) = g(r)
dr?

(3.13)

g(r) <kZu(r), g(r)=0 as r -

Py

The perturbation theory is applied between some large distance R and
infinity. Suppose u vanishes atR, then we have the following boundary

condition

u(R)=0. (3.14)

If we represent the solution of the homogenous equation by y(r), at

infinity we must have

y(r) =asin (kr - kR)

(3. 15)
U(r) = (a +Aa) sin(kr —kR+7))

where AA and n are generated by g(r) . Since g(r) is small, we can write

29



u=y(1l+10), (3.16)

where { is a small function. Substitution of Eq. (3.16) in Eq. (3.13) gives

d—dr (yzg—f) =g(r) v, (3.17)

where, upon double integration, we obtain

€=J d—zj‘ g(r') ydr'. (3.18)
R Y

R

The constants of integrations are fixed by the condition (3. 14) and the
fact that u' (R) = y'(R).

We now integrate Eq. (3. 18) by parts,

£ = [[ g(r)ydxﬂ U 325}- I g(r) ydr J d_z_, (3.19)
y EY

R R R

When the integration with respect to y is carried out, and the result is

substituted in Eq. (3.17), we obtain
u(r) = sin (kr ~ kR) {:a +% I g(r) cos (kr - kR) dr}
(3.20)

+ cos (kr - kR) [.% J g(r) sin (kr - kR) d{l .
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Comparison of the second of Eqs. (3.15) and Eq. (3. 20) shows that

La :% I g(r) cos (kr ~ kR) dr
R

> (3.21)

1
i

n=-3% g(r) sin (kr - kR) dr

R

to first order. The functions g(r) in the four differential equations (3.12)

are given by
gi(r)=2ZU“uj. (3.22)
i

To first order this can be written by
gi(r)=2z a, U;;sin (k;r -k; R)). (3.23)
j

where R; is the last zero of u, Wwith positive slope. Substitution of this

equation in Eq. (3. 21) gives

~Ri ~
a.
Na, = - T‘:_.’-‘ cos (k;r -k, R)U,. sin (k;r -k ;R ) dr
] L. (3.29)
a, -t
M = E ?L.J sin (kir-kiRi)Uij sin (kjr-ijj)er

Aa, and 7, can easily be calculated by substituting the values of
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U.. from Appendix IV, integrating the resulting integrals by parts and
ij

retaining the leading terms.

The asymptotic amplitudes and phase shifts are given by

a,(®=a;(R,)+0a,
(3.25)

§.(® =8 R)+m, +[L-8(i,3)+8(i,4)]n/2
where a (R;) and & (R;) are the amplitudes and total phase shifts calcu-
lated at R, by the machine, and where §(i,3)and §(i,4) are the §

functions.

D. Details of the Numerical Integration

30 rule were

Milne's2?? method with variable mesh size and Simpson's
used for the integration of the differential equations and evaluations of the
integrals respectively. As the solution advances from the origin, the
differential equations become less sensitive to the size of the increment,
and the error of integration falls below certain small number e. At each
value of r the value of the function is found, first with the given value of

the increment, and second with the value of increment divided in half,

The error of integration is defined as the difference between these two

32




solutions. When the error becomes small the increment is doubled until
a maximum value is reached. At some distance R, all the exchange

potentials and, similarly, all the direct potentials exceptthose represent-
ing optically allowed transitions and the 2p - 2p elastic scattering potential

become vanishingly small. (See Appendix IV.) At this distance the

taining only these potentials., The integration is continued until some
distance R,, where the first order solution of the rest of the range of
integration is obtained by the method developed in Sec. IIIC. No
attempt was made to solve any set of linear equations or any matrix
equations, as these equations are solvable by the computer in their
original form.

The values of the constants of the numerical integration are given
below. h, and h,are the initial and the final increment of integration.

In some exceptional cases, different values were used.

Table II1. 1

h, 1x107%
hy 0.05
€ 1x107*
R, 30

R, 200

All quantities are in units of Bohr radius except ¢ which is dimensionless.
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IV. RESULTS
The four differential equations listed in Appendix I
were integrated by the methods described in Sec. III, Based on the

Eqgs. (2.41), (2.37) and (2.36) we define the three relationships,

4

Z k,a, aj,sin(é, -3 )
D_- i4-1 ,
Z ki ain 8in ,Sin(sim - 8in)l
iml
mn=1,2 3,4, m#n, (4.1)
o [Bw =Sl
" lsmnl + Isnml
mn=1,2,3,4 m#n, (4.2)
4
) Iswl -1
n=1
DII - ,
m 3
2
) Iswl 1
nel
m=1,2 3 4. (4.3)

In an exact solution of the four differential equations the right-hand side
of these equations should vanish, they can therefore be used to test the

accuracy of the numerical integration. As an illustration the numerical
values of D, D__

k, =2.0 and L = 3 will be given below

34
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D,, = 1.4 x1073, D,, = 2.6 x 1074, D,, =13x103
D,, = 5.1 x 1074, D,, =2.2x10%3, D,, = 1.8 x 10°3
DY, = 7.6 x 1074, D), = 5.1x 1073, D, = 5.6 x 1073
D), = 5.4 X 1073, DY, = 5.7 x 1073, D), = 1.3 x 1073

D] =18x10"% D;=7.6x10"5 D;=25x10"% Dj=4.4x10.

When L is large, particularly at the threshold, the cross sections are
small and the values of these cross sections are more sensitive to the
errors in the numerical integration. As a result the D values become
large. In the tables that follow, except for a few cases, the cross
sections that are listed have maximum D values less than 1%. In the
exceptional cases by combining different independent sets of solutions
and different mesh sizes it has been assured that the cross sections
listed are accurate to within a few units in their last significant
figures.

The cross sections listed in the tables are obtained by averaging
the values of cross sections from two independent sets of solutions of
the four differential equations. These independent solutions are
obtained by choosing two different values for the determinant (3.11).
For small values of k; a maximum mesh size of 0.1 in Bohr radius is
used while for large values of k; this mesh size is 0.05. It is believed
that within the framework of the present formalism the cross sections

are accurate within one or two units in their last significant figures.
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Corresponding to the t.hree channels 1s, 2s and 2p, the cross
section matrix is a 3 x 3.matrix. By Eqs. (2.32) and (2.37) the excita-
ltion cross sections 2s.‘—-)ls, 2p —1s and 2p—2s can easily be found in
terms of the excitation crogs sections 1s—2s, 1s —2p and 2s —2p,
The excitation cross slectior‘1 2s—2p is quite large and should be calcu-
lated by taking into account the energy difference between the levels

28 2P, , and 2P; ,,. The summation over partial cross sections does

1/2?
not converge for this transition and the method of partial wave is not
useful. The Born calculation of this cross section is given by Seaton,3!
In the 5 tables that follow the excitation cross sections ls - 2s, 1s - 2p,
. and l.the elastic scattéring cross sections 1s-1s, 2s-2s and 2p-2p are
given. The 1s-2s, 1s-2p,andls-2s-2p eigenstates coupling a.pprpxima-
tions correspond respectively to the inclusion of the 1s, 2s; 1s,2p and
1s, 2s, 2p hydrogen eigenstates in the total wave function. The case 8=0
corresponds to the neglect of the exchange terms in the 1s-2s-2p eigen-
states coupling.

To find the contribution of the higher partial waves whose cross
sections are difficult to calculate by the method of eigenstate expansion,
we use the regular partial wave Born approximation. Although the
partial wave Born approximation as defined by Seaton,?® in which the
continuity of cu.rrent is satisfied, agrees better with eigenstate expan-
sion calculation for particular elements of the cross section matrix, this
is not true in general. As a result, for the sake of consistency, we calculated
the contribution of higher parfial waves through regular Born approximation.
The cross sections corresponding to the 5 tables are plotted in the

5 figures.
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V. DISCUSSION

(i) The results of numerical integration using noniterative method
agrees with the iterative numerical integration of Burke, Smith and
Schey,’32 although the two results are different sometimes by as much
as 10%. The difference between the two methods is large when the
cross section is small.

(ii) 1s-2s excitation cross section. As is seen from Fig. 1, the
1s-2s and the 1s-2s-2p eigenstates calculations are in good agreement
with the experimental results of Lichten and Schultz’ although the
calculations do not give the sharp peak in the cross section at the
threshold as is observed experimentally. The shape of the exchange
neglected 1s-2s-2p eigenstates calculation curve is in excellent agree-
ment with the shape of the experimental curve. The two curves coin-
cide beyond 25 ev. We notice that the Born approximation agrees with
the eigenstate expansion calculations for values of bombarding
energies close to the threshold. The normalization of the experimental
results in reference (1) to the Born approximation at 45 ev appears
therefore to be justified.

(iii) 1s-2p excitation cross section. The experimental curve?
agrees in shape with the calculated curves but it is lower than all of
them (cf. Fig. 2). It should be noted that the inclusion of the 2s state
in the 1s - 2p excitation cross section calculation increases this

cross section,

Since the experimental curve of Stebbings et al. in Fig. 1 is
normalized according to the experimental curve in Fig. 2, if in a new
measurement of the 1s-2p transition cross section higher values for
the cross section is found, the two experimental curves in Fig. 1 will

be brought into better agreement.
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(iv) 2s-2s elastic cross section, The cross section at the thresh-
old is large. A Ramsauer effect is evident in the L = 0 case (cf. Table
Iv).

(v) 2p-2p elastic cross section. The cross section at the threshold
is considerably larger than 2s-2s elastic cross section. The Born
approximation agrees with the eigenstate expansion calculations at higher
energies, This cross section is not calculated in reference 32,

(vi) Although we have neglected the spin orbit interaction we have
investigated the role that spin plays in electron atom collision. Assum-
ing that electrons are identical but spinless particles, the total wave
function should be symmetric with respect to the coordinate interchange
of the two electrons. The curves 1s-2s-2p symmetric in the 5 figures
correspond to such a wave function, The disagreement between theory
and experiment is an indication of the important role the antisym-
metry property of the total electron wave function plays in the free
bound electron collisions,

(vii) A study of the 5 figures shows that the Born approximation,
despite its simplicity, agrees with eigenstate expansion calculations for
low and close to the thresholds bombarding electron energies. Of
particular interest is the fact, yet unexplained, that the Born approxi-

mation underestimates some cross sections and overestimates others,

VI. CONCLUSION
The hydrogen eigenstate expansion of the total wave function of
the system of a free electron in collision with a hydrogen atom seems

to be the most natural expansion in any partial wave calculation. The
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formalism can easily be extended to the electron impact atomic hydro-
gen excitation cross section calculation higher than n = 2, and to the
electron impact excitation cross section of any hydrogenic atom
whose central potential field is given by a potential such as Hartree or
Hartree Fock potentials, Where the Born approximation does not
accurate results the eigenstate expansion seems at present to be the
most suitable method.

In addition the treatment of the angular momentum as described
here is the same for any system of one free and two bound particles
with radial interacting forces, and the formalism developed here can
be applied to such problems.

We conclude that the Born approximation can be used with more

reliabilityinelectron impact atomicexcitation cross sections.

Finally, it is believed that the noniterative technique employed
here to solve the radial differential equations will find more

applications in problems containing exchange integrals.
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APPENDIX 1

The Four Differential Equations

d? L(L+1) 2
[ﬁuﬁ_%,;?J u(k,L,r)

=2y,(1sls, ryu(k,L, r) + 2y,(1s2s, r)u(k,L, r)
L 1/2
+2 _3(2L+1‘)] v, (1s2p, r)u(k,L-1,r)

[ L+1 2
-2 3(2L+1")] y,(1s2p, r)u(k,L+1, r)

2 2
+ f% rR:o(f)yL (1sk,L, r) +-2% rR,o(r)yL(ls k,L, r)

3L 172
" [(2L+1)(2L_1)2] rRzl(r)yL_l(lskzL..l,r)

¥ {(21, 13((L2£1+)3)2] /2 Ry, (Isk, L+l 1)
+

-B8(L, 0) (1+k,*) (1s|k,L) rR, (1)

- B8(L, 0) (1+k,?) (1s|k, L) rR, (r)

-B8(L-1,0)(1+k;?) (Is|k,L-1)rR, (r). (A1)
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= 2y,(1s 2s, r)u(k, L, r) + 2y,(2s 2s, r)u(k,L, r)
L 1/2

+ 2 [3_—(2L+1)] ¥, (2s2p, r)u(k,L -1, r)
L+1 |7

-2 [3(2L++1):| ¥1(2s2p, r)u(k,L+1,r)

2 2
+ 2L€-1 rRlo(l')yL(2Sle, r) +ﬁﬁTirR2°<r) Yy, (2sk,L, r)

3L 1/2
"2 |:(2L+1)(2L-1)2:| rR2l(r)yL_1(2Sk2L_1,r)

3(L+1 1/2
" [(2L+1)((2;+)3)2} Ry (1) y, ,,(2sk, L+1,r)

~B5(L,0) (%+k12) (2s|k, L) R, (r)
- 85 (L, 0) (%+k22) (2s |k, L) rR,o(r)

-,BS(L-I,O)(%+k22) (2s|k,L-1)rR,, (r) . (A2)
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L 1/2
- [m] ¥y (1s2p, r) u(k, Ly 1) +

L 1/2
2 E(2L+1j

L-1
+ 2 l:yo(2PZP, r) + m) v,(2p2p, r):] u(k,L-1,r1)

YL(L+1)

_5
5 2L +1

y,(2p2p, r)u(k,L+1, r)

3L 12
" L2L+1)(2L-1Y] Rio()y,, (2

k,L,r)

1/2
25 [( 3L 2] rRy(r) v, (2pk,L, 1)

2L+1)(2L-1)

6.3 y,(2pk,L-1,71) L-1
+ 57— rR (r) + y
2L -1 21 (2L+1)2 2L-3 7L

_6B8VL(L+1)

y. (2pk,L+1,r) rR,, (1)
(2L+1)2 L 2 21

_BS(L,I)(%+kf)(2p|le)rRm(r)
_ﬁs(L,1)(%+1§ﬁ (2p | k,L) rR,q (1)

_380“2)(%+kf>(kﬂkzL-Dar(ﬂ.
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v, (2s2p, r)u(k,L, r)
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- 92
E LD @D

2
o - ?] u(k,L+1, r)

= t/12
A/ a

cog |l 17 1eap k. L 2 [ Ll 2s 2 k.L
"2 L) s nudhloo- 3(2L+1)J V1 (2328, 1) ulikale ©)

6 YL(Ls+1l
-z LgL+11) ¥, (2p2p, r) u(k,L-1,r)

2L +

(L+2)y, (2p2p,
+ 2 |}0(2p2p,r)+ 5(;£+11)) r)] u(k,L+1, r)

B 1/2
-2 L(2L+i§12;:i3)2:| TR0 (DY, (2pk, L, 1)
23 [ saan |7 g (2pk,L, 1)
B L+ (2L+3)7| 20 (DY, (2P kL,

_68ML(L+1D)

rR, . (r)y, (2pk,L~-1,T1)
(2L+1)? M n 2

68 _r v.(2pk,L+1,r) (L+2Dy ,, (2pkL+1, 1)
+2L+3r 21 (r (2L+1)2 + (2L+5)

- B8 (L, 0) (—i—+ kf) (2p | k,L+1) R, (r). (A4)
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APPENDIX II

Elements of the Potential Matrix
Elements of Dy

j:
1 -2 1 3 r r2 r
D, == [1+3)e e (Fedese)
1 2] ., 6(L-1)T1 1 1 1
D.. = |- r —_— o
33 [r+4 4+24]e 2L + 1 [rs (r3+r2+2r
b -_|1,3.r r2]e_, 6(L +2) [1 1 1 1
2 I I S | 2L+1 |3 \ps "2 " ar
’r_ 3
- 212 2\ "7*
sz—Du:"g'_ (r+3-)e
p_-p -12812 (L \* 11 /1 3 9 21¢
13751 7 243 T \2L+1 2 \;2t2rt8ts
D -D o 12802 (Le1) ¥ 11 1 3 9
147 243 \2L+1 2 \pzf2r*8te
1/2
- - L 1 1 1 1 r r?\ .
Dz —Dsz--3(2L+1) [r—z-(§+?+5+€+§2)e ]
1/2 2
-p_ =3 [L+l 1 /1. 1.1 r 1\
D24_D42_3<2L+1) [r2~<r2+r+2+6+24)e]
1/2
L(L+1) [1 (1 1 1 1
D,, =D, =-18 | ~———= — -(=+=+5= +F + 575
34 43 [(2L+1)2] r’ 2 2 2T 6724

Elements of Fi ;:
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R i "R
35 l— 1 ( 21 [ JL+1 ' L+1 21 ,>
F_, = R r dr’ =R r — dr
#o2k-1 a2 A\t ) Y 2 ]t

F,, =Fp, [Rlo = Rzo]

L 12 R, '
= V3 x [ R r'tdr =R, rt I
Fl3 IB (2L+1)(2L_1)2 rL..l 10 21

31 Fl3 [RIO:R21]

.
1}

172 [R
Fl, --/38 L+1 < [Lii J' R,, LACH P (L2 J' 1o
(2L +1) (2L + 3)? r r
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Foio=Fyy [Rlo‘——\Rzl]

1/2 R r R
F,, =38 L x | J R,, r'“dr' -R,, rt J. 2 dr’
(2L+1) (2L-1)? ! r't?

0 0

Fi, =Fy; [Rzo'\e R2l]

1/2 R T b4 R
F,, =-Vv3f L+1 x |22 R, o't dr’ - R, 2 20 dr’
(2L +1) (2L + 3)? b+ n 'Lt

0 0

Fo, =Fy [Rzo = R21]

1/2 R f * R
F34 =—3ﬁ L(L+ 12 x % J. R21 r/L+l dr’ ___R21 rL~l-1 _21 dr’
(2L +1) r A , 't
Fi = Fas
Elements of g and hii :
BR,, r**! (1 1 +k,2
Bin 7 5L 1 hy, =Ry 17 T2 (L, 0)r
L
1
BRzor”’l 1 Z+k22
€22 =7 3L +1 hj, =Ry, 2 & (L,0)T
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3,8R21 rL+l hl _i

S 33
(2L-1) (2L +1)? r

£33

- 1 2

38(L-1)R,, r*! Lk,
g2, = T hd =Ry, [ oA s o

(2L-1) (2L-3) 2 |55 T3

1

] WLtl + 2
gl, = ka1t L =R rl__4+k2 (L, 0)r
‘" (2L+3)(2L+1)? ¥ 21LrL 2 ' J
) _3,8(L+2)R21r“3’h2 _ Ry,
B4e = (2L+3)(2L+5) ' ~ 1wz

1+k}
1 2
€12 7 2f+1R20 f“‘,hxzleo [;I" 5 S(L,o){l

ggl = g12 [R20—>R10]! h21: k12 [R10_>R20]
' L 1/2 . 1 1+k;
- _Vgﬁ [(2L+1)(2L-1)2] R,, r", h;; =R, —rL-l_ 2 S(L,)r

B31 = Ey3 [R21'>R10] v hyy =hy, [Rlo'_>R21]

+1 1/2 Ry
2,4=-V38 L Ry 2 hyy = -
(2L +1) (2L +3)? r

241 T 8Bq4 [R21—>R10] ’ hy, =hy, [Rxo—>R21]
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3 L 7Ry, et 1 _atgg
g, =V356 R, r%, h,, =R, |—- s (L,
2 [(2L+1)(2L-1)2] 2 S

g32 = g23 [Rzl—;Rzo] ' h32 = h23 [R20.—>R21]
1/2 R
g24=—/§/5 L+1 R,, Rl h,, = 24’01
(2L +1) (2L +3)? rt

42 = By [R21_>R20], hyy = hy, [R20_>R21]

L(L+1)]'? 41 R
g.,=-38|—~—=—2 R,, r s h =z —
34 [(2L+1)4:| 21 34

B43 = B34

In Fi’_ matrix the interchange of the functions R,,, R,, and R,,

accompanies the interchange of their arguments too.
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APPENDIX III

Singularity of the Determinant of Eq. (3.6)
for L=0 and 1

(1) L =0Case. By making use of the definition of D;; and F,; and

Eq. (3.7) the following relationship can be derived from Eq. {3.3)

I“’ rR -d—2-+k2v—,BrR i2+k2vdr
i 20\ 32 1|1 1o\’ q 2 2| Va2

[axs B,y — B2y, Bu:l J (A5)

Ho

where

{eo]
a,, =j R,, R,, r'dr =[215 x 3-9)*
0

@®

a,, =j R, R“rsdr =-373
()

Integrating the left-hand side of Eq. (A5) by parts, and making use of

Eqgs. (2.11) and (3. 7) we obtain

Ry, [0 4 k2) v, - BrRy (9 +k2)v,|dr
} rzodr2+1vl‘r10ﬁ+2vz

= - 2[B,, - BB,,] (A6)

We conclude

1

B, - BBy, :71—5—[6‘13 By -Bay, Bl‘]' (A7)
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Therefore all the elements on the right-hand side of Eqs. (3.6) are not
independent. In order that these equations be consistent one of them
should be a linear combination of others. By making use of the first of
Eqgs. (3.7) it can be shown directly that equations similar to Eq. (A7)
hold among the elements of each row of the determinant of Egs. (3.6).
(11) L =1Case. Similar to the previous case the following rela-

tionship can be derived from Eqs. (3.3)

d? 2 d?
f [’R"(drz et =B em (G ”‘3)”3]“’

2
= —3-|25813 11 +Bay B, ~ag, sta +1/-( 13 B "—13333 14)] (A8)

where

w
a3 '-'I R}, r*dr = 3C
0

Integrating the left-hand side of Eq. (A8) by parts, and making use of

gs. (2.11) and (3. 7) we obtain

® d? K2 2 BrR d* +k2) v, |dr
ar(‘&Tz*' 170 v - 103;_‘2' 2) Va

=- 2[331 -8 Bls]' (A9)

50




Combining Eqs. (A8) and (A9) we get

1 1 3
B;; -8By, = 3 [ﬁaISBll +B8,3By, ~a;3;B;; + "2 (313 Bis "‘gﬂassBu)] (A10)
Finally, Eqgs. {3.3) give the following relationship

Integration by parts of the left-hand side as before gives

0

42 2 a?
J [I'R21<—dr—2+k§";;) VZ—ErRz()(—d—r—i""kg) Vs] dr

0

= - 2[By, - 8By . (Al12)

whereupon we get
_1 Bl
By, =BBy; = 3 Ba,; By, + Ba;3B,; ~a,;B;;

+ 2 (azs Bys - ':5i Bag, Bu):l (A13)

To remove the singularity in L = 0 case one of the C/;, is chosen
arbitrary, and a degenerate equation is removed from Egs. (3.6). Simi-
larly in L = 1 case two of the C}; are chosen arbitrary and two degenerate

equations are removed from Eqgs. (3.6).

51



APPENDIX IV

Elements of the Matrix of the Sum of the Asymptotic Coulomb and

Centrifugal Potentials
Ull =L(L+1)r-2 ’ U22=L(L+1)r-2

Uy = (L= DLr? 4+ 12(L-1) QL+1)'r73, U,y =(L+1) (L+2) £72 £ 12(L+2) (2L+1)7'r"3

U, =0y =0, Uy =U, = [25612/243] [L/(2L+1)]"r2
U,=U, =- [2567”.;/243] [(L+ 1)/(2L+ 1)]“ r?, Uy =U,, == 6[L/(2L+1)]“r'2

%
Up =0, =6 [(L+1)/(2L+1)] 2, U, =U,, = =36 [L(L+1)]/2 (2L +1)"! -3
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TABLES OF CROSS SECTIONS
In the following five tables the partial and the total cross sections

for the processes ls-2s, is-2p, ls-1s, 25-2
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e

=}
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o
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=

o]

B

[md

aild

approximations are listed. Each partial cross section corresponds to
a given total orbital angular momentum L. which appears at the head
of each column. ZS is the sum of the singlet and ZTis the sum of the
triplet partial cross sections within certain approximation and for a
given electron energy. Qr is the total cross section, and in the case of
the eigenstates coupling, Born approximation is used to add the contri-
bution of the partial waves beyond the maximum L, which has been
computed within the given eigenstates coupling approximation. This
contribution can easily be obtained by using the given table of the Born
approximation of the partial and the total cross sections. kj is the wave
number of the electron beam incident on the ground state of the atom and
k2 is the wave number of the same beam when atom is in its first excited
state. The energy of the beam is given in electron volt through

E = 13.6 k2,
where k can be kj or kp. In Table V, 1; and 1, are the quantum numbers

of the orbital angular momenta of the bound and the free electrons

respectively.
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TABLE 1.

1s-2s Excitation Cross Sections

bt
—

A. Born Approximation

W N = O
OO OUMN - OO

N O
cuLNn~ oW

o e O
ocwnmNn— oW

BN o e e = O
S NN~ DO

B W N - O
C OO WMN e~ O

OO0 O WU NF OO

DWW N e O

L=0 L=1 |L=2 L =3 =4 L=5 L=6 L=7 z Qr
0.16376 | 0.00981 | 0.00021 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.17378 | 0.17379
0.19578 | 0.04795 | 0.00428 | 0.00026 { 0.00000 | 0.00000 [ 0.00000 { 0,00000 | 0.24827 | 0.24827
0,16272 | 0.07073 | 0,01141 | 0.00125 | 0.00011 | 0.00001 | 0.00000 | 0.00000 | 0.24622 | 0.24623
0.12704 | 0,07896 | 0,01858 | 0,00299 | 0.00039 | 0.00004 | 0.00000 | 0.00000 | 0.22800 | 0.22800
0,05872 | 0.06606 | 0,02979 | 0.00939 | 0,00242 | 0.00053 | 0.00010 | 0,00002 | 0.16703 [ 0.16706
0.01946 | 0.03363 | 0.02521 | 0.01365 | 0,00614 | 0.00236 | 0,0008]1 | 0,00025 | 0,10151 | 0,10187
0.00388 { 0.00909 | 0.01019 | 0.00866 | 0.00628 | 0,00394 | 0.00226 | 0.00116 [ 0.04546 | 0,04758
0,00123 | 0.00320 | 0.00420 | 0.00431 | 0.00385 | 0.00301 { 0,00216 | 0.00141 | 0.02337 | 0,02720

B. Exchange Neglected 1s-2s-2p Eigenstates Coupling Approximation

L=0f L=1 |L=2 L =3 L=4 | L=5 | L=6 | L=7 z Qr
0.2202) 0.0749 0.3535 0.6486 0.6486
0.1685| 0,1427 0.1598 | 0.0517 0.5227 0.5227
0.0951 0.1142 0.0298 | 0.0616 0.0231 0.3238 |0.3238
0.0594} 0,1137 0.0032 0.0360 {0.0244 {0.0135 0.2502 0.2502
0,0249 0.0861 0.0201 0.0068 0.0112 {0.0118 0.0074 0.1683 0.1683
0.0101 0.0373 0.0255 §0.0107 0.0046 0.0034 | 0,0033 0.0949 0.0953

C. 1s-2s Eigenstates Coupling Approximation

L=0 L=1 L=2 L=3 L=5 L=6 L=7 Zs
06,0375 0.0017{ 0,0000 { 0.0000 0.0000 | 0.0000 0.0392
0.0725| 0.0583 | 0,0002 | 0,0000 0,0000 | 0.0000 0.1310
0.0701 | 0.0525 0.0023 ] 0,0000 0.0000 | 0.0000 0.1249
0,0547 | 0,0534 | 0.0054 { 0,0002 0.0000 | 0.0000 0.1137
0.0241 | 0,0384 § 0.0110 | 0.0022 0.0001 | 0,0000 0.0762
0.0072 | 0.0157 | 0.0093 | 0,0041 0.0005 | 0,0002 0.0385

g4z | QT

L=0 L=1 L=2 L=3 L=5 L=6 L=7 b
0.0004 | 0.1686 | 0.0060 | 0,0000 0.0000 | 0.0000 0.1750 | 0.2142 | 0,2142
0.0021 | 0.1528 | 0.0446 | 0.0021 0.0000 | 0.0000 0.2017 | 0.3327 | 0,3327
0.0044 | 0,1052 | 0.0568 | 0.0068 0.0000 | 0.0000 0.1737 | 0.2987 | 0.2987
0.0061 | 0.0737 | 0.0576 | 0.0114 0.0002 | 0.0000 0.1505 | 0.2642 | 0.2642
0.0073 | 0.0355 | 0.0406 | 0,0174 0.0012 | 0.0002 0.1072 | 0.1833 | 0.1833
0.0049 | 0.0162 | 0.0205 ] 0.0143 0.0032 } 0.0012 0.0677 | 0.1062 | 0,1068

D. 1s-2s-2p Eigenstates Coupling Approximation

L=0 L=1 L=2 L=3 L=5 L=6 L=7 24
0.0523 §{ 0.0048 | 0.0620 0.1191
0.0768 1 0.0147 | 0.0833 | 0,0092 0.1840
0.0585 | 0,0245 | 0.0647 | 0.0236 0.1768
0.0382 | 0.025] | 0.0246 | 0,0252 0.0028 0.1240
0.0123 ] 0.0308 | 0.0015 | 0,0041 0.0034 | 0,0023 | 0.0026 | 0.0621
0.0049 | 0.0152 | 0.0068 | 0.0021 0.0010 | 0.0011 { 0.0008 | 0.0329
0.0010 | 0.0031 | 0.0031 } 0,0023 0.0009 [ 0.0005 | 0.0006 | 0.0130
0.0003 | 0.0010 | 0.0012 | 0.0012 0.0008 0.0055

IstIy Qr

L=0 | L=1 | L=2 | L=3 L=5 | L=6 | L=7 Z;

0,0013 | 0.0748 | 0,0019 0.0780 | 0.1971 | 0.1971
0.0040 | 0.1224 | 0.0195 | 0.0214 0.1673 | 0.3513 | 0.3513
0.0050 | 0,1013 | 0.0326 | 0.0077 0.1597 | 0.3366 | 0,3366
0.0055 | 0.0724 | 0.0359 | 0,0036 0.0076 0.1355 | 0.2596 | 0.2596
0,0045 | 0,0333 | 0,0309 | 0,0072 0.0054 | 0,0049 | 0.0043 | 0.0951 | 0.1573 | 0.1573
0.0031 | 0,0155 | 0.0176 | 0.0101 0.0025 | 0,0023 { 0,0019 | 0.0574 | 0.0903 | 0.0907
0,0013 | 0,0048 | 0.0065 | 0.0059 0.0029 | 0.0018 | 0.0012 | 0.0288 | 0.0418 | 0.0439
0.0006 | 0,0019 | 0.0028 | 0,0030 0.0022 0.0132 | 0.0187 | 0.0261
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TABLE II. 1s-2p Excitation Cross Sections

A. Born Approximation

L=0 L=l L=2 L=3 L=4 L=5 L=6 L=7 z Qr

BN e O
coownNmOw

0.00107 | 0.46700 | 0.09607 | 0.01025 | 0.00087 | 0.00007 | 0.00001 | 0.006000 |0.56534 { 0,57535
0.00499 | 0.48867 | 0.35645 | 0.13467 | 0.03964 | 0.01032 | 0.00254 | 0,00059 |1.03787 | 1.03851
0.00702 | 0.36207 | 0.41698 | 0.24992 | 0.11533 | 0.04649 | 0.01753 | 0.00624 |1.22158 | 1.22859
0.00747 | 0.25540 | 0.38137 [ 0.29903 | 0.17908 | 0.09269 | 0.04453 | 0.02004 |1.27961 | 1.30741
0.00550 | 0.09184 [ 0.19986 | 0.23775 | 0.21386 | 0.16292 | 0,11291 | 0.07232 [1,09696 | 1.28101
0.00234 | 0.02222 | 0.05938 | 0.09386 | 0.11287 | 0.11376 | 0.10248 | 0,08374 [ 0.59065 | 1,04055
0.00048 | 0.00285 | 0.00806 | 0.01537 | 0.02309 | 0.02920 | 0.03271 | 0,03273 [0.14449 | 0,66256
0.00013 | 0,00066 | 0.00179 | 0.00359 | 0.00586 | 0,00816 | 0.01009 | 0.01114 |[0.04142 | 0.45252

B. Exchange Neglected ls-2s-2p Eigenstates Coupling Approzimation

N O
QU N = OO

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 z QT
0.1600 0.3985 0.6497 1.2082 1.2194
0.1007 0.2917 0.8190 0.2190 0.0476 0.0224 1.5004 1.5041
0.0980 0.2008 0.6201 0.3696 0.1380 0.0586 0.0166 1.5017 1.5150
0.0822 0.1251 0.4481 0.3922 0.2044 0.1014 0.0403 1.3937 1.4416
0.0372 0.0334 0.1671 0.2568 0.2295 0.1706 0.1136 1.0082 1.2645
0.0105 0.0068 0.0394 0.0837 0.1089 0.1165 0.1042 0.4700 1.0036

C. ls-2p Eigenstates Coupling Approximation

N O
CUWNM=OW

Singlet
L=0 L=zl L=2 L=3 L=4 L=5 L=6 L =7 3¢
0.0044 {0.1216 | 0.1422 0.2682
0.0168 [ 0.0655 | 0.3011 j 0,0206 | 0.0057 | 0.0059 0.4156
0.0299 | 0.0366 | 0.3948 | 0.0851  0.0260 | 0.0099 | 0.0060 0.5883
0.0296 | 0.0169 | 0.3088 | 0.1421 { 0.0517 { 0.0236 | 0.0103 0.5830
0.0059 | 0.0037 | 0,0821 | 0.0989 | 0.0718 | 0,0458 | 0.0304 0.3386
0.0010 | 0.0006 | 0,0131 | 0.0271 | 0.0327 | 0.0335 { 0.0296 0.1376

Triplet

g+ 2 QT

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 i
0,0002 | 0.2066 | 0.0005 0.2073 | 0.4755 | 0.4867
0.0016 | 0.1078 | 0.0020 | 0.1651} 0.0363 | 0.0187 0.3315 { 0.7471 | 0.7508
0.0037 ]0.0540 | 0.0060 | 0.1599 | 0.1002 | 0.0365 | 0,0217 0.3820 | 0.9703 | 0.9836
0.0055 | 0.0249 | 0,0098 | 0.1446 | 0.1336 | 0.0695 | 0,0341 0.4220 | 1,0050 | 1.0529
0.0059 | 0.0027 | 0,0133 | 0,0868 | 0.1231 [ 0.1100 | 0.0849 0.4267 | 0.7652 | 1.0215
0.0028 | 0.0002 | 0,0073 | 0,0311 | 0.0559 | 0.0700 | 0.0772 0.2445 | 0.3820 | 0.9156

D. 1s-2s-2p Eigenstates Coupling Approximation

I N i -1
QO OoOWN=OO

Singlet
L=0 L=1 L=2 L=3 L=4 (L=5 L=6 L=7 I
0.0390 {0.0745 | 0.1027 0.2162
0.0360 {0.1123 | 0,2575 [ 0.0317 0.4375
0.0358 }10.1094 { 0,3405 | 0.0886 | 0.0308 | 0,0113 | 0.0075 0.6239
0.0345 | 0.0806 | 0.2912 |0.1278 | 0.0506 | 0.0237 | 0.0105 0.6189

0.0172 {0.0175 | 0.0953 | 0.1003 | 0.0693 } 0.0440 |0.0290 | 0,0238 | 0.3964
0.0036 }0,0023 | 0.0170 [ 0.0303 | 0,0344 | 0.0333 | 0.0293 | 0.0229 | 0.1731
0.0004 | 0.0002 | 0.0015 }0.0037 | 0.0060 | 0.0078 | 0.0094 | 0.0106 | 0.0396

N N -]
coouNn~O0

0.0001 | 0.0001 | 0.0003 | 0,0008 | 0,0014 ) 0.0020 0.0047
Triplet
T +3; QT

L =0 L =1 L=z2 L=3 L=4 L=5 L=6 L=7 i

0.0007 |0.0682 | 0.0112 0.0801 } 0.2963 | 0.3075
0.0033 [0.0801 | 0.0500 |0.1730 0.3064 { 0.7439 | 0.7976
0,0070 |0.0626 | 0.0567 |[0.1841 | 0.1082 [ 0,0404 | 0.0209 0.4799 | 1.1039 | 1.1172
0.0096 |0.0418 | 0,0537 |0.1761 | 0.1409 | 0.0729 | 0.0332 0.5282 | 1.1471 | 1.1950
0.0107 [0.0131 | 0.0351 [0.1081 | 0.1343 [ 0.1157 | 0.0842 | 0.0596 | 0.5608 | 0.9570 | 1.1410
0.0053 [0.0038 | 0.0143 [0.0393 | 0.0625 | 0.0731 {0.0738 | 0,0642 | 0.3363 0.5094 0.9593
0.0010 | 0.0006 | 0.0025 | 0.0066 [ 0.0122 | 0.0175 |0.0220 | 0.0246 j 0.0870 | 0.1266 | 0.6095
0.0002 | 0.0002 [ 0.0006 |[0.0016 | 0.003]1 | 0.0048 0.0105 | 0.0152 | 0.4475
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TABLE III. 1s-1s Elastic Cross Sections

ky A, Born Approximation

L=0 L =1 L=2 L =3 L =4 L =5 L=¢6 L=7 Z QT
0.9 | 1.65113 | 0.09722 { 0.00379 | 0.00013 | 0.00000 |0.00000 | 0.00000 |{0.00000 | 1.75227 | 1.75233
1.0 | 1.42354 1 0.11192 | 0.00587 | 0.00027 | 0,00001 | 0.00000 | 0.00000 [0.00000 | 1.54161 | 1.54167
1.1 1.22728 | 0.12348 | 0.00835 | 0.00049 | 0.00003 | 0.00000 | 0.00000 [0,00000 | 1.35963 | 1.35968
1.2 | 1.05936 | 0.13181 | 0.01109 | 0.00082 { 0.00006 |0.00000 |0.00000 j0,00000 | 1,20314 | 1,20318
1.5 0.69140 | 0.14017 | 0.01955 | 0.00241 | 0.00028 | 0.00003 | 0.00000 |0.00000 | 0.85384 | 0.85389
2,0 | 0.36283 | 0,12285 | 0.02924 | 0.00621 |0.00124 |0.00023 |{0,00004 |0,00001 | 0.52265 | 0.52267
3.0 | 0.12662 | 0,07286 | 0,03013 | 0.01131 | 0.00402 |0.00133 | 0.00042 |0,00012 | 0,24681 | 0,24700
4.0 | 0.05565 [ 0.04195 | 0.02291 | 0.01145 | 0.00546 |0.00243 |0.00104 |[0.00042 | 0.14131 | 0.14194

B. Exchange Neglected ls-2s-2p Eigenstates Coupling Approximation

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 ) QT
0.9 | 2.632 0.3300 | 0.1916 0.0157 3.169 3.169
1.0} 2,091 0.2518 |0,0890 0.0309 0.0078 0.0028 2,473 2.473
1.1 | 1.694 0.2302 0.0483 0.0299 0.0105 0.0038 |0.0016 2,018 2.018
1.2 | 1.390 0.2228 | 0.0346 0.0248 [0.0113 0.0045 0.0019 1.690 1.690
1.5 | 0.8181 0.2032 |0.0310 0.0135 {0.0091 0.0048 0.0027 1.082 1.082
2,0 [ 0.4053 0.1742 | 0.0494 | 0.0181 0.0108 }0.,0036 0.0027 | 0.6641 0.6641

C. ls-2s Eigenstates Coupling Approximation
Singlet

L =0 L =1 L=2 L =3 L=4 L=5 L =6 L=7 g
0.9 | 0.4324 {0.0382 |0.0015 [0.0000 | 0.0000 | 0.0000 | 0,0000 0.4721
1.0 | 0.2824 | 0.0338 |0.0014 (0.0001 |0.0000 | 0.0000 |0.0000 0.3177
1.1 | 0.1865 | 0.0199 |0.0011 [0.0001 |0.0000 | 0.0000 |0,0000 0.2076
1.2 10,1397 | 0.0111 |0.0006 |0.0001 |0.0000 | 0.0000 | 0.0000 0.1515
1.5 0.0905 [0.0012 {0.0001 |0.0000 |0.0000 | 0.0000 |0.0000 0.0918
2.0 ( 0.0608 |0.0083 |0,0016 |0.0003 [0.0001 { 0.0000 |0.0000 0.0711

Triplet
Z3t2r | Qrp

L=0 | L=1 [L=2 |L=3 |L=4| L=5 |L=z6 |L=7 Z;
0.9 | 3.684 1.394 10,0477 (0.0016 |0.0001 { 0.0000 |0,0000 5.127 5.599 5.599
1.0 | 2,903 1.162 0.0579 (0.0023 |0.0001 | 0.0000 | 0.0001 4.125 4.443 4,443
1.1 ]2.297 0.9654 [0.0651 (0.0036 |0.0002 | 0,0000 {0.0000 3.331 3.539 3.539
1.2 {1,829 0.8085 {0.0696 |0.0050 |0,0004 | 0.0000 | 0.0000 2.713 2.864 2.864
1.5 [ 0.9716 |0.4857 |0.0727 |0.0092 (0.0011 { 0.0001 |0.0000 1.5404 | 1.632 1.632
2.0 | 0.4042 |0.2366 |0.0627 {0,0142 |0.0031 | 0.0006 |0,0001 0.7215 | 0.7926 0.7926
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TABLE III,

Continued

D. 1s-2p Eigenstates Coupling Approximation
Singlet
L =0 L =1 L=2 L=3 L=4 L=5 L=6 L=7 DI
0.9 ] 0.4230 | 0,0186 | 0.0442 | 0,0043 0.4901
1.0 | 0,2984 | 0.0167 | 0.0635 | 0,0073 | 0,0017 | 0,0006 | 0.0005 0.3887
1.1] 0.2148 | 0,0108 | 0,0578 | 0,0104 | 0.0026 |0.0008 | 0.0003 0.2975
1.2 | 0.1569 | 0.0048 |{0.0338 | 0.0105 | 0,0030 |0.0011 | 0.0005 0.2106
1.5 0.1040 | 0,0008 | 0.0035 | 0,0038 | 0.0025 |0.0012 | 0.0007 0.1165
2.0 0,0698 { 0.0138 | 0.0030 | 0,0018 |0,0018 {0.0008 | 0.0006 0.0916
Triplet
2o +24 QT
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 b
0.9 3.689 1,421 0.0682 | 0.0136 5.192 5.682 5.682
1.0} 2.914 1,236 0.0758 | 0.0152 | 0.0054 | 0,0019 | 0.0015 4,250 4.638 4,638
1.1} 2,309 1.036 0.0814 | 0.0142 | 0.0066 |0,0025 | 0.0011 3.451 3.749 3.749
1.2 ] 1.840 0.8702 | 0.,0850 | 0.0139 | 0.0069 |0,0031 | 0.0015 2,821 3.031 3.031
1.5 | 0.9806 | 0.5249 | 0.0863 | 0.0152 | 0.06063 | 90,0031 | 0,0019 1.618 1.735 1,735
2.0 | 0,4184 { 0.2702 | 0.0828 | 0,0256 {0,0111 |0.0030 | 0,0019 0.8130 [ 0.9045 | 0.9045
E. 1s-2s-2p Eigenstates Coupling Approximation
Singlet
L=0 L =1 L=2 { L=3 L =4 L=5 L =6 L=7 g
0.9 | 0.4503 | 0.0133 | 0,0457 { 0,0058 | 0.0000 0.5151
1.0 ] 0.2649 | 0,0100 [ 0.0660 §0.0076 | 0.0019 [0.0007 | 0.0007 0.3518
1.1} 0.1736 | 0.0131 [0.0582 }0.0104 {0.0028 |0.0009 | 0,0004 0.2594
1.2} 0.1283 | 0.0102 | 0,0351 | 0,0104 | 0.0030 [0.0012 | 0.0005 0.1887
1.5 0.0854 | 0.0021 } 0.0049 }0.0042 | 0.0025 |0.0012 | 0.0007 | 0.0010 { 0.1020
2,0 | 0.0591 | 0.0093 | 0.0016 |0.0009 |0.0007 |0.0006 | 0.0004 | 0.0002 | 0.0728
3.0 | 0.0266 | 0.0138 [ 0.0052 [0.0019 |0.0008 {0.0003 |0.0002 | 0.0005 | 0.0493
4.0 0.0133 [ 0.0106 |0,0061 {0,0034 |0.0020 [0,0012 0.0366
Triplet
ZS +2T QT
L=0 L=1 L=2 L =3 L =4 L=5 L=6 L =7 e
0.9 | 3.687 1.726 0.0875 j0.0166 |0.0055 5.523 6.037 6.037
1.0 | 2.908 1.372 0.0938 |0,0174 |0.0062 [0.0021 | 0.0016 4,401 4,753 4,753
1.1 ] 2.299 1.090 0.0949 |0.0166 |[0.0075 |0.0028 {0.0012 3.512 3.772 3.772
1.2 { 1.828 0.8884 |0.0956 [0.0162 [0.0076 |0.0033 |0.0015 2.841 3.029 3.029
1.5 { 0.9697 | 0.5228 {0.0911 | 0.0166 |0.0069 |0.0033 |0.0021 | 0.0020 |1.615 1.716 1.716
2.0 10,4006 | 0.2433 | 0.0657 [0.0154 |0.0044 |0.0020 | 0.0011 | 0.0008 |0.7333 |0.8061 | 0.8061
3,0} 0.1127 | 0.0854 |0,0388 [0,0156 |0,0062 (0.0022 [0,0009 | 0.0007 |0.2625 |0.3118 | 0.3120
4.0 | 0,0475 | 0.0444 |0.0276 {0.0160 |0.0093 |0.0053 0.1501 [0.1867 | 0.1888
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TABLE

1V. 2s-2s Elastic Cross Sections

k, A, Born Approximation
L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 z QT
0.24 |389.97 15,910 0,27680 | 0.00319 | 0.00003 | 0.00000 | 0.00000 | 0.00000 [406.16 406.17
0.50 | 105,52 32.129 5.0152 0.55306 | 0.04846 | 0.00347 | 0,00022 | 0.00001 |143.269 143.276
0.68 47.381 24.746 7.4981 1.7023 0.31602} 0.04869 | 0.00658 | 0,00078 81.700 81,703
0.83 26.562 17.895 7.5601 2.5080 0.69820 | 0.16365 | 0.03393 | 0.00621 55.427 55.440
1,23 8.2461 7.6846 4,9702 2.7483 1,3500 0.57745 | 0.22452 | 0.07803 25.879 25,990
1.80 2,4331 2,7773 2,2763 1.6805 1.1541 0.71994 | 0.41776 | 0.22120 11.680 12,105
2.87 0.5245 0.713811 0.68903 | 0.61123} 0,51876 | 0.41048 | 0.31076 | 0.21860 4.0011 4.8280
3.91 0.18794 0.27611| 0.28658 | 0,27339| 0.25098 | 0.21580 | 0.17946 | 0,14029 1.8106 2.7417
B. Exchange Neglected 1s-2s-2p Eigenstates Coupling Approximation
L=20 L =1 L=2 L=3 L =4 L=5 L =6 L =7 Z Qr
0.24 | 32,02 8.489 42,26 82.77 82.78
0.50 2,041 7.710 23,35 9.004 9.368 7.702 5.870 65,045 65,052
0.68 2.255 8.247 15.16 5.547 4,373 3.755 2,975 42,312 42.316
0.83 1.861 8.206 10.67 4.637 2,792 2.223 1.818 32,207 32.226
1.23 1.716 4,987 5,030 3,321 1,797 1.058 0.7179 18,537 18.726
1,80 1.020 2,134 2,150 1,750 1,275 0.8320 0.5457 9.707 10.352
C. ls-2s Eigenstates Coupling Approximation
Singlet
L=0 L=1 L=2 L=3| L=4| L=5|L=6|L=7 g
0.24 0.3303 8,196 0.2628 0.0028 8,792
0.50 1.532 10.38 0.0275 0.0048 | 0.0008 | 0,0002 |0.0249 11,97
0.68 1.115 5.536 1,502 0.1150 | 0,0087 |0.,0010 [0.0017 8,279
0.83 0.8980 3.512 1.997 0.4303 | 0,0747 {0.0129 |0.0032 6.928
1.23 0.5702 1.413 1.236 0.7010 [ 0.3129 }0.1228 |0.0450 4,401
1.80 0.2825 0.5370 | 0.5285 0.4193 | 0.2931 [0.1863 [0.1110 2,358
Triplet
I +Z;
L=20 L=1 L =2 L=3 L=-4| L=5 L=-6 L=7 o Qr
0.24 |45.94 118.8 7.713 0.0540 172.51 181.30 181.31
0.50 0.2102 34.44 21,05 2.776 0.2521 {0.0316 |0.0994 58.86 70.83 70.84
0.68 1.366 18,13 12,74 4.059 0.8282 ]0.1463 |0,0442 37.31 45,60 45,60
0.83 2,112 11.65 8,725 3,887 1,230 0.3225 | 0.0850 28.01 34,94 34,96
1.23 1.811 4.691 4.008 2,585 1.399 0.6637 |0.2862 15.44 19.84 20,03
1.80 0.8989 1,735 1.652 1.316 0.9510 {0.6359 |0.4008 7.590 9.947 10.592
D. 1ls-2s-2p Eigenstates Coupling Approximation
Singlet
L=20 L =1 L=2 L=3 L-4 |L=5 [L=6 L=7 Z
0.24 7.800 14.79 22.42 45,01
0.50 0.2858 0.6960 3.149 4.447 2,925 | 2.063 1.491 15.057
0.68 | 0.0661 1.044 2.455 1.884 1.480 1.098 0.7928 8.820
0.83 0.1675 1.088 2,105 0.9905 | 0.8282 | 0.6606 | 0,5071 6.347
1.23 0.3739 1,075 1.196 0.7196 | 0.3940 | 0.2496 | 0.1827 | 0,1409 4,332
1.80 0.2416 0.4974 | 0.5133 0.4133 ] 0.2923 | 0,1928 | 0.1247 | 0.0799 2,3553
2,87 0,0847 0,1489 0.1574 0.1466 | 0,1280 | 0,1057 | 0.0852 | 0,0658 0.9223
3.91 0,0365 0.0635 0.0702 0.0698 | 0.0660 | 0,0599 0.3659
Triplet
I +3;
L=0 L=1 L =2 L-3 L -4 |L=5 {L=6 L=7 P Qr
0,24 |16,522 1.236 89,652 107.41 152.42 152,43
0.50 6.172 17,19 30.69 12,90 5,559 5.373 4,257 82.14 97,206 97.213
0.68 2.346 12,88 14,52 7.937 3.046 2.459 2.090 45,28 54,099 54,103
0.83 1.709 9.166 8.976 5.367 2,365 1.514 1.246 30,343 36,686 36,705
1,23 1,391 4.199 3,880 2,681 1.585 | 0,9110| 0.5658 | 0.4094 15,622 19,955 20,066
1.80 0,7898 1,656 1,603 1,291 0.9466 | 0,6520 | 0,4305| 0.2786 7.648 10,002 10,427
2,87 0.2622 0.4652 0.4857 0.4479 | 0,3901 | 0.3234} 0,2623 | 0,2045 2.8413 3,7636 4.5905
3.91 0.1113 0.1945 0.2146 0,2122 | 0,2000 | 0.1812 1.1138 1,4797 2.7306
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TABLE V,

2p-2p Elastic Cross Sections

A, L-/t’,l - &2 0Odd, Born Approximation

0 Qo ooy
NOWW®Oo

N oo
MR- NEAR-AP-IN

N~ OOOO

L=1 L=2 L=3 L=4 L=5 L=6 L=7 2s
26,562 6.1961 2.1260 0.92680 | 0,44497 | 0.22694 | 0,08105 {36.56
14,210 5.,2190 2.1768 1,0526 | 0.55433 | 0.,31476 | 0.18383 |23.71

8,8346 | 4.,0761 1.9476 1.0100 | 0.54983  0,31728 | 0,18718 |16.,923

6.0065 3.2062 | 1.6993 0.94122 | 0,53204 | 0.31331 | 0.18680 |12.8854

2,5053 1.7048 1.,1013 0,70920 | 0.44518 | 0.28212 | 0.17577 6.9237

0.91169| 0.74615 | 0.56949 | 0,42475 | 0,30158 | 0.21122 | 0.14245 3.30733
0.23647| 0.22647{ 0,20035 | 0,17178 | 0,13878 | 0.10926 | 0.08177 1,16488
B. L-4, -4, Odd, Exchange Neglected 2p Eigenstates Coupling Approximations

L=1 L=2 L=3 L=4 L=5 L=6 L=17 2,
61,12 8.444 2,5808 1,1408 | 0,6200 | 0.3720 | 0.2516 |[74.52
15,292 6.884 2.5436 1.1580 [0.6216 | 0.3640 |0.2352 (27,10

8.008 4,940 2.2548 1,1160 |[0.6160 | 0.3640 0.2352 [17.54
5.108 3.6364 | 1.9292 1,0380 | 0.5968 | 0.3592 | 0.2340 12,90
2,0484 | 1,7392 | 1,1812 |[0,7652 | 0.4972 | 0,3236 | 0,2208 6.776
0.7640 | 0,7220 | 0.5816 0.4436 |0.3312 | 0,2400 0.1784 3.261
0.2132 | 0.2180 | 0,2004 0.1776 | 0.1520 0.1272 {0.1064 1,195
C. L-4,-4, Odd, 2p Eigenstates Coupling Approximation

Singlet
L=1 L=2 L=3 L=4 L=5 L=6 L=7 Z0s
2,963 4,161 0.6725 0,286l 0.1552 | 0,0930 |0,0629 8.394
3.735 3.182 0.7915 [0.3066 0.1576 | 0.0913 | 0,0589 8,323
2,165 1,728 0.6851 0.3025 0.1587 | 0.0920 0.0590 5.190
1,371 1.107 0.5562 [0,2799 0.1547 | 0,0913 |0,0589 3.619
0.5280 | 0.4603 | 0,3115 |0.1991 0,1277 | 0.0823 | 0.,0558 1.7647
0.1928 | 0,1831 | 0,1475 {0.1124 0.0837 | 0.0605 |0.0449 0.8249
0.0534 | 0,0547 | 0.0503 |0,0445 0.0381 0.0319 | 0.0267 0.2996

Triplet

L=1 L=2 L=3]| L=4 L=5 L=6 L=7 So1

49,22 3.265 1,850 0.8528 |0.4650 [ 0.2788 | 0.1886 56.12
7.791 1.851 1.504 0.8193 |0.4598 | 0.2722 |0.1764 12.87
4,720 2,219 1,361 0.7700 | 0.4481 0,2700 |0.1756 9.964
3.373 2.099 1.237 0.7198 10,4318 | 0.2652 |0.1744 8.300
1.484 1.225 0.8376 }0.5509 |[0.3630 |0.2384 |0,1639 4.863
0.5674 | 0.5337 0.4295 0.3283 |0.2456 [0.1784 10,1330 2.4159
0.1596 0.1632 0.1500 0.1328 ]0.1136 | 0,0951 0.0797 0.8940
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TABLE V. (Continued)

k, D. L-4, -1, Even, Born Approximation

L=0 L=1 L=2 L=3 L=4 L=5 L=6)| L=7 T QT
0.24 | 12,488 230,42 4,0427 1.9014 0.30797 | 0,57480 | 0.29675 | 0.06128 [250.09 290.69
0.50 0.1758 74,475 7.0963 0.92172 | 0.48094 | 0,45745 | 0.30098 | 0,05695 83.965 109.714
0.68 | 0.07386 | 36,478 6.5573 1.0156 0.29902 | 0,27895 | 0,23113 | 0.04364 | 44.978 63.742
0.83 | 0,22032 | 21.559 5,4143 1,1653 0.26124 | 0,15835 0.15225 | 0.02533 28,956 43,572
1,23 | 0,25024 7.,3349 2,9703 1,1453 0.37750 | 0.11091 0.04377 {0.03572 12,269 20.571
1.80 0.13477 2.3518 1,3155 0.74676 | 0.39290 0.18754 | 0.07731 | 0,02824 5.2348 9.6066
2.87 0.04395 0,55809 0.40443 | 0.30267 | 0.21866 | 0.15188 | 0.09753 | 0.05832 1.8355 3.8272
3.91 0.01868 0,20876 | 0,17048 | 0,14307 0,11656 | 0,09255 0.06896 | 0,04864 0.8677 2,1455

E. L-'ﬂl-'ﬁz Even, Exchange Neglected 1s-2s-2p Eigenstates Coupling Approximation

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 b QT
0.24 | 31,96 91,21 154,6 92,86 55.86 36,79 24,37 487,7 566,32
0.50 9.371 12,65 30.88 20.53 12,99 8,451 5.695 100.6 129.8
0.68 | 4.156 5.953 13,19 9.628 6.563 4,508 3,130 47.13 66,56
0.83 2.542 4,560 7.424 5.249 3,811 2,793 2.032 28,41 43,07
1.23 1.208 2,879 2,906 1,734 1,106 .8438 6912 11.37 19.56
1.80 5612 1,385 1,238 .8299 5109 .3005 .2022 5.028 9.382

F. L-4,-i, Even, 1s-2p Eigenstates Coupling Approximation
Singlet

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Zgs
0,24 | 1,964 5.238 17.34 1.260 0.4896 |0.2460 26.54
0,50 | 0.5131 3,159 1.544 1.439 0.4063 |0.1906 0.1133 7.365
0.68 | 0,2346 2,091 1.039 0.4944 0.2539 0.1520 0.0984 4,363
0.83 | o0.l227 1,252 0.9930 0.1532 0.1191 0.0990 0.0766 2.816
1.23} 0,1071 0.6796 0.6167 0.2249 0.0635 0.0249 0.0217 1.7384
1,80 | 0.0571 0.3366 0.2926 0.1818 0.0954 |0.0426 0.0172 1.0233

Triplet

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Ze s QT
0.24 (15,62 26,72 32.44 6.674 1.252 0.7359 83,44 |178.89
0.50 | 4.844 3.384 19.97 12.52 0.8285 |[0.3266 0.2754 42,15 72.80
0.68 | 2.247 3.886 10.33 5.922 1.035 0.2270 0.1764 23,82 45,22
0.83 | 1.293 3,650 6.287 3.476 0.9248 0.2097 0.1162 15,957 | 32.45
1.23 | 0.4842 2.287 2.424 1.418 0.6072 }0,2079 0.0717 7,500 | 17.28
1.80 | 0.1909 1.063 0.9673 0.6659 0.4001 0.2024 0.0962 3.586 8.943

G. L-4, -4, Even, 1s-2s-2p Eigenstates Coupling Approximation
Singlet

L=20 L=1 L=2 L=3 L =4 L=5 L=6 L=7 Zes
0.24 | 7.852 13,45 38,56 21.41 15,44 8.610 6.432 111,75
0.50 2,470 5,026 7.433 4.900 3.201 2,101 1,417 26.548
0,68 1,344 2.283 3,025 2,683 1,756 1,166 L7903 13.047
0.83 7424 1,316 1.579 1,518 1.079 .7580 5313 7.524
1,23 .2813 6752 0.6254 .3663 2726 .2289 .1916 2.641
1.80 L1357 .3339 .2862 .1816 .1065 .0659 ,0471 .0383 1.1952
2,87 .0513 .1053 .0930 0739 .0553 .0391 .0268 ,0181 0.4628
3.91 .0267 0451 0422 0373 .0318 .0261 0212 .0166 0.2470

Triplet

L=0 L=1 L=2 L=3 L=4 L =5 L=6 L=7 ZET Qp
0,24 | 27,90 75.79 63,10 87,21 41.31 26,12 17.13 338.56 518.92
0,50 | 4.337 4,540 20,66 21,62 10,38 6,373 4,255 72.17 122.01
0.68 2.823 4,018 10.75 8.986 5,149 3,337 2,302 37.37 67.46
0.83 2.032 3,674 6,400 4.796 2,950 2,013 1,468 23,333 44,54
1,23 9741 2.290 2,465 1.599 .9568 6421 4924 9.419 20,11
1.80 4291 1,055 .9303 .6614 4150 .2540 .1639 .1180 4,027 9.531
2.87 .1564 L3217 .2907 .2330 .1780 .1291 .0907 L0623 1,4619 3.945
3.91 .0805 1366 .1285 .1143 .0982 .0810 .0655 .0524 0.7570
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LIST OF FIGURES

Figure 1 — ls-2s Excitation Cross Section. The experimental curves

Figure 2

Figure 3

Figure 4

Figure 5

are given in references 1 and 2. The 1s-2s curve corre-
sponds to a wave function which contains the ls and the 2s
atomic states. The ls-2s-2p curve corresponds to the ad-
dition of the 2p states to the above wave function. The

B = 0 curve is the case when the exchange potentials are
neglected. In ls-2s-2p sym it is assumed that electrons

are spinless particles whose total wave function is symmetric.
ls-2p Excitation Cross Section. The experimental curve is
given in reference 3. The ls-2p curve corresponds to a
wave function which contains the 1s and the 2p atomic states.
The rest of the curves have the same meaning as in Figure 1.
ls-1s Elastic Cross Section. The curves have the same
meaning as in Figure |l and 2.

28-2s Elastic Cross Section. The curves have the same
meaning as in Figures 1 and 2.

2p-2p Elastic Cross Section. The curves have the same

meaning as in Figure 2.
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